
Lesson 10
Processors Continued

Building a datapath

• Datapath element is a unit used to operate on or hold data within a
processor.
• In the MIPS implementation, the datapath elements include the

instruction and data memories, the register file, the ALU, and adders.
• Program Counter (PC) is the first element we need in a datapath.
• PC is a register that holds the address of the current instruction.
• Program counter (PC): The register containing the address of the next

instruction in the program to be executed.
• Next, we need an adder to increment the PC to the address of the

next instruction

Two state elements are needed to store and
access instructions, and an adder is needed to
compute the next instruction address

A portion of the datapath used for fetching
instructions and incrementing the program
counter

To execute any instruction, we
must start by fetching the
instruction from memory.

Register files

• A register file consists of a set of registers that can be read and
written by supplying a register number to be accessed.
• A register file can be implemented with a decoder for each read or

write port and an array of registers built from D flip-flops
• R-format instructions read two registers, perform an ALU operation

on the contents of the registers, and write the result to a register.
• This instruction class includes add, sub, AND, OR, and slt
• R-format instructions have three register operands, so we will need to

read two data words from the register file and write one data word
into the register file for each instruction.

A register file with two read ports and one
write port has five inputs and two outputs

The two elements needed to implement R-format
ALU operations are the register file and the ALU

Sign-extend:

• To increase the size of a data item by replicating the high-order sign
bit of the original data item in the high-order bits of the larger,
destination data item.

Two units needed to implement loads and
stores

• Branch target address: The address specified in a branch, which
becomes the new program counter (PC) if the branch is taken. In the
MIPS architecture the branch target is given by the sum of the offset
field of the instruction and the address of the instruction following
the branch.
• Branch taken: A branch where the branch condition is satisfied and

the program counter (PC) becomes the branch target. All
unconditional branches are taken branches.
• Branch not taken or (untaken branch): A branch where the branch

condition is false and the program counter (PC) becomes the address
of the instruction that sequentially follows the branch.

Datapath for a branch uses the ALU to evaluate the branch condition
and a separate adder to compute the branch target as the sum of the
incremented PC and the sign-extended

The datapath for the memory instructions
and the R-type instructions

Pipelining

• Pipelining: An implementation technique in which multiple
instructions are overlapped in execution, much like an assembly line.

non-pipelined approach to laundry

1. Place one dirty load of clothes in the washer.
2. When the washer is finished, place the wet load in the dryer.
3. When the dryer is finished, place the dry load on a table and fold.
4. When folding is finished, ask your roommate to put the clothes

away.

non-pipelined approach to laundry

pipelined approach to laundry

Pipelining in Processors

• The same principles apply to processors where we pipeline
instruction-execution. MIPS instructions classically take five steps:

1. Fetch instruction from memory.
2. Read registers while decoding the instruction. The regular format of MIPS

instructions allows reading and decoding to occur simultaneously.
3. Execute the operation or calculate an address.
4. Access an operand in data memory.
5. Write the result into a register.

Total time for each instruction calculated
from the time for each component

Pipelining Speed-up Formula

Pipelining improves performance by increasing instruction throughput

Pipeline hazards

• These are situations in which the next instruction cannot execute in
the following clock cycle
• We will look at:

1. Structural hazard
2. Data hazard
3. Conttrol hazard

Structural hazard

• When a planned instruction cannot execute in the proper clock cycle
because the hardware does not support the combination of
instructions that are set to execute.

Data hazards

• Data hazards occur when the pipeline must be stalled because one
step must wait for another to complete.
• Data hazard is also called a pipeline data hazard.
• Data hazard is when a planned instruction cannot execute in the

proper clock cycle because data that is needed to execute the
instruction is not yet available.
• Example:

add $s0, $t0, $t1
sub $t2, $s0, $t3

Forwarding:

• It is a method of resolving a data hazard by retrieving the missing data
element from internal buffers rather than waiting for it to arrive from
programmer-visible registers or memory.
• Forwarding is also called bypassing

Data Hazard continued

• Load-use data hazard is a specific form of data hazard in which the
data being loaded by a load instruction has not yet become available
when it is needed by another instruction.
• Pipeline stall, which is also called bubble, is a stall initiated in order to

resolve a hazard.

Data Hazard

• Does the following cause a data hazard for the 5-stage MIPS pipeline?

i1: add $s0, $s1, $s2
i2: add $s3, $s0, $s4

• The answer is yes

Data Hazard

• Does the following cause a data hazard for the 5-stage MIPS pipeline?

i1: add $s0, $s1, $s2
i2: add $s3, $s1, $s4

• The answer is No

Control Hazards

• Control hazard: Also called branch hazard.
• It is when the proper instruction cannot execute in the proper

pipeline clock cycle because the instruction that was fetched is not
the one that is needed; that is, the flow of instruction addresses is not
what the pipeline expected.
• Branch prediction: A method of resolving a branch hazard that

assumes a given outcome for the branch and proceeds from that
assumption rather than waiting to ascertain the actual outcome

Parallelism via instructions

• Pipelining exploits the potential parallelism among instructions
• Instruction-level parallelism: The parallelism among instructions.
• Multiple issue: A scheme whereby multiple instructions are launched

in one clock cycle.

Two major ways to implement a multiple-
issue processor
• Static multiple issue: An approach to implementing a multiple-issue

processor where many decisions are made by the compiler before
execution.
• Dynamic multiple issue: An approach to implementing a multiple-

issue processor where many decisions are made during execution by
the processor.

Reading

• Hennessy and Patterson Chapter 4.3, 4.4, 4.5, 4.7, 4.8 and 4.10

